Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction
نویسندگان
چکیده
Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m(2) g(-1)), a high mass activity (398 mA mg(-1)) and specific activity (0.98 mA cm(-2)), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.
منابع مشابه
Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation
The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...
متن کاملUltralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity.
We for the first time report a facile, wet-chemical strategy for the high-yield (approximately 100%) synthesis of ultralong Pt-on-Pd bimetallic nanowires (NWs) with the cores being Pd NWs and the shells being made of dendritic Pt, which exhibit high surface area and enhanced electrocatalytic activity towards methanol oxidation reaction.
متن کاملSynthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation
The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...
متن کاملPlatinium-Ruthenium electrocatalyst as sensor electrode for methanol oxidation
Hybrid nanocomposites of binary Pt-Ru/Polyaniline were prepared by oxidative polymerization of aniline andformation Pt and Ru nanoparticles. The polymerization of aniline was carried out in the presence of Potassiumhexa cyano Platinate (IV) and Ruthenium (III) nitrosyl nitrate as oxidizing agents. During the reaction anilinemonomers undergo oxidation and form polyaniline (PANi) whereas the redu...
متن کاملSynthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires.
We have demonstrated a one-pot, facile and rapid strategy to synthesize novel PtBi nanoplatelets (NPLs) and PdBi nanowires (NWs) with controlled shape, size, and composition in the presence of oleylamine (OAm) and NH4Br. In contrast to the conventional face centered cubic (fcc) structure of Pt-based NPs, PtBi possesses a chemically ordered intermetallic hexagonal close packed (hcp) structure. U...
متن کامل